MATH 54 - HINTS TO HOMEWORK 8

PEYAM TABRIZIAN

Here are a couple of hints to Homework 8! Enjoy! :)
Note: Exam-wise, section 6.7 is the most important section, so make sure to study it in detail. However, there might be problems from 6.6 and 6.8 that might be graded!

SECTION 6.6: Applications to Linear models

6.6.1, 6.6.3. Use equation (1) on page 360 . It's basically just solving a least-squares problem with a special matrix A.

6.6.7.

(a)

$$
X=\left[\begin{array}{ll}
x_{1} & x_{1}^{2} \\
x_{2} & x_{2}^{2} \\
x_{3} & x_{3}^{2} \\
x_{4} & x_{4}^{2} \\
x_{5} & x_{5}^{2}
\end{array}\right], \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
$$

where $\left(x_{1}, y_{1}\right)=(1,1.8)$ etc.
(b) You can ignore this part if you want! (or use MATLAB)
6.6.13. OH GOD! IGNORE, IGNORE, IGNORE!!! You have better things to do! :)
6.6.15. Start with $X^{T} X \hat{\beta}=X^{T} \mathbf{y}$.

Then, by definition of X, we get:

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

That is:

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
\hat{\beta_{0}}+\hat{\beta_{1}} x_{1} \\
\hat{\beta_{0}}+\hat{\beta_{1}} x_{2} \\
\vdots \\
\hat{\beta_{1}} x_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

NOW expand the left-hand-side and the right-hand-side out, and what you should get are the normal equations, using the notation $\sum x$ and $\sum y$ etc. introduced right before the exercise!

Date: Friday, October 14th, 2011.

SECTION 6.7: InNER PRODUCT SPACES

6.7.1. Here $\langle\mathbf{x}, \mathbf{y}\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}$
6.7.3, 6.7.5, 6.7.7. Here $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$. And $\|p\|=\sqrt{\langle p, p\rangle}$.

Finally, remember that the formula for orthogonal projection remains the same, namely:

$$
\hat{q}=\frac{\langle q, p\rangle}{\langle p, p\rangle} p
$$

6.7.9. Here $\langle p, q\rangle=p(-3) q(-3)+p(-1) q(-1)+p(1) q(1)+p(3) q(3)$
(a)

$$
\hat{p_{2}}=\frac{\left\langle p_{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p_{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}
$$

(b) $q=p_{2}-\hat{p_{2}}$! (as usual! :)).

For the second part, all that is says is that multiply q by a constant, so that the new polynomial $c q$ satisfies $c q(-3)=1, c q(-1)=-1$ etc.
6.7.11. Here $\langle p, q\rangle=p(-2) q(-2)+p(-1) q(-1)+p(0) q(0)+p(1) q(1)+p(2) q(2)$.

If we let $p_{3}=t^{2}$, then we have:

$$
\hat{p_{3}}=\frac{\left\langle p_{3}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p_{3}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}+\frac{\left\langle p_{3}, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}
$$

6.7.13. Show that it satisfies axioms $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$ in the definition of an inner product space (page 368). You may want to use the fact that $(A+B)^{T}=A^{T}+B^{T}$ and $(c A)^{T}=c A^{T}$. Also, for $\mathbf{4}$, remember that $\mathbf{w}^{T} \mathbf{w}=w \cdot w \geq 0$ unless $\mathbf{w}=\mathbf{0}$.
6.7.19. The Cauchy-Schwarz inequality says $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$
6.7.22, 6.7.24. $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Also, $\|g\|=\sqrt{\langle g, g\rangle}$

SECTION 6.8: APPLICATIONS OF INNER PRODUCT SPACES

6.8.1. This is the same as fitting data to a line (section 6.6), except you multiply the equation $A \mathbf{x}=\mathbf{y}$ on the left by the diagonal matrix W of the weights to obtain $W A \mathbf{x}=W \mathbf{y}$. For example, in the first problem, we have:

$$
W=\left[\begin{array}{ccccc}
\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Now solve the equation $W A \mathbf{x}=W \mathbf{y}$ by using least-squares!
6.8.2. Should give you the same result, because solving $W A \mathbf{x}=W \mathbf{y}$ is the same as solving $(2 W) A \mathbf{x}=(2 W) \mathbf{y}$.
6.8.3. Use the formula in example 2 (on page 380), except you have to add the term $\frac{\left\langle g, p_{3}\right\rangle}{\left\langle p_{3}, p_{3}\right\rangle} p_{3}$
6.8.4.
(a) Use the Gram-Schmidt process on the set $\mathcal{B}=\left\{1, t, t^{2}\right\}$ with respect to the inner product
$\langle p, q\rangle=p(-5) q(-5)+p(-3) q(-3)+p(-1) q(-1)+p(1) q(1)+p(3) q(3)+p(5) q(5)$
(b) Just imitate example 2.

